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Abstract. In this paper, we develop two algorithms for finding a directed path of minimum rank-
two monotonic cost between two specified nodes in a network withn nodes andm arcs. Under the
condition that one of the vectors characterizing the cost functionf is binary, one yields an optimal
solution inO(n3) or O(nm log n) time if f is quasiconcave; the other solves any problem in
O(nm+ n2 log n) time.
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1. Introduction

A number of global optimization problems encountered in real-world applications
have some special structures which enable us to design efficient algorithms [7].
One of the most favorable structures is thelow rank monotonicitystudied by Tuy
et al. [11,13,14]. The nonlinearity of any rankk monotonic functionf is located in
a subspace of dimensionk even iff is defined on a subset of much higher dimen-
sional space thank. Functions of this kind appear in multiplicative programming
[10,18], facility location [15], multilevel programming [17] and certain variants of
minimum concave-cost network flows, for which even polynomial algorithms have
been developed [6,9,16]. Especially in multiple objective decision making, they
play an important role [3,5]. In fact, when a decision maker hask linear object-
ivesc1x, . . . , ckx without a common scale, a handy approach to optimizing them
simultaneously is to optimize a rankk monotonic function such asf (x) = ∏k

i=1
(cix + αi) or f (x) = max{αicix|i = 1, . . . , k} for some constantsαi ’s.

In this paper, we consider a minimum rank-two cost path problem, i.e., a prob-
lem of finding a directed path which minimizes a rank-two monotonic cost function
f between two specified nodes in a given network withn nodes andm arcs. Re-
cently, in-car navigation systems using artificial satellites have made it possible
to find a way to a destination without road maps. The present systems, however,
only provide several candidate routes from which a driver must make a selection
while driving. Therefore, efficient algorithms for minimizing rank-two monotonic
functions will be helpful in reducing the driver’s burden.
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The organization of the paper is as follows. In Section 2, we will describe the
problem formally and show that it is aN P -hard problem. In Sections 3 and 4,
we will concentrate on a class that one of the vectors characterizing the rank-two
monotonic cost functionf is binary. We will develop two algorithms for solving
the class: one yields an optimal solution inO(n3) or O(nm log n) arithmetic
operations andO(n2) evaluations off if the cost functionf is quasiconcave; the
other solves any problem in this class inO(nm+ n2 log n) arithmetic operations
andO(n) evaluations off . In Section 5, we will briefly discuss an application of
these algorithms to the general class of problems.

2. Minimum rank-two cost path problem

Let G = (N,A) be a graph consisting of a setN of n nodes and a setA of m
directed arcs. Our purpose is to determine a directed path of minimum cost from a
specified nodes to another specified nodet in G. When the number of times the
path traverses each arc(i, j) ∈ A is xij , it costsf (x), wherex ∈ Zm is the vector
of xij ’s. We assume that the cost functionf : Rm → R is continuous on some
open convex setD, which includes the setX of all x > 0 satisfying

∑
{j |(i,j)∈A}

xij −
∑

{j |(j,i)∈A}
xji =

 1 for i = s
−1 for i = t

0 for eachi ∈ N\{s, t}.
(2.1)

We further assume thatf is rank-two monotoniconD with respect to two nonneg-
ative vectorsc1 andc2 ∈ Zm [12,18]. Namely,

(i) the vectorsc1 andc2 are linearly independent;
(ii) if x, y ∈ D andck(x − y) > 0 for k = 1,2, thenf (x) > f (y).

As will be seen later,f can be a convex function; but the class also involves non-
convex functions such as multiplicative functionsf1(x) = (c1x + α1)(c

2x + α2)

onD1 = {x ∈ Rm|ckx + αk > 0, k = 1,2} and fractional functionsf2(x) =
c1x/(α3 − c2x) onD2 = {x ∈ Rm|c1x > 0, α3 − c3x > 0}. For other examples
of nonconvexf , see a recent textbook of structured nonconvex optimization by
Konno, Thach and Tuy [11].

We call the problem described above aminimum rank-two cost path problem,
which can be formulated as follows:

(MR2P) minimize{f (x)|x ∈ X ∩ Zm}.
Under conditions (i) and (ii), an optimal solutionx∗ to (MR2P) is given by an
elementary pathP if nodess and t are connected. For suppose thatP contains a
directed cycleC. Let

yij =
{
x∗ij − 1 if (i, j) ∈ C
x∗ij otherwise.



MINIMUM RANK-TWO COST PATH PROBLEMS 407

Then we haveck(x∗ − y) = ∑
(i,j)∈C c

k
ij > 0 for k = 1, 2, which implies that

f (x∗) > f (y). The cost does not rise even ifC is discarded fromP .
Problem (MR2P), though simple looking, is intractable from the viewpoint of

worst-case complexity; and in fact it belongs to the classN P -hard. To see this, let
us consider the following recognition problem:

SHORTEST WEIGHT-CONSTRAINT PATH (SWCP) [4]
INSTANCE: GraphG = (N,A), positive lengthlij ∈ Z, positive weightwij ∈ Z
for each(i, j) ∈ A, specified nodess, t ∈ N , positive integersK,W .
QUESTION: Is there a path inG from s to t with total weightW or less and total
lengthK or less?

The recognition version of the 0-1 knapsack problem, well known to beN P -
complete, can reduce in polynomial time to this problem (see, e.g., Ahuja et al.
[1]); and hence (SWCP) is anN P -complete problem.

Choosing any instance of (SWCP), let us define a convex function:

f3(x) = max{lx −K,wx −W },
wherel andw are the vectors oflij ’s andwij ’s, respectively. Ifl andw are linearly
dependent, the instance is equivalent to an ordinary shortest path problem and
can be solved in polynomial time; therefore, we can assume condition (i) forl

andw without loss of generality. Moreover, we can see thatf3 satisfies condition
(ii) on Rm with respect tol andw. In other words,f3 is a rank-two monotonic
function. The instance has the ‘yes’ solution if and only ifG contains ans-t path
with nonpositivef3(x), which can be verified by solving (MR2P) withf = f3.
Consequently, we have

PROPOSITION 2.1.Problem (MR2P) isN P -hard.

In the rest of this paper, we concentrate on a class of (MR2P) where all the
nonzero components ofc1 or c2 are the same value. Sincef is rank-two monotonic
with respect toα1c

1 andα2c
2 for any positiveαk ’s, we can assume either of the

vectors to be binary. We then show that this class can be solved in polynomial
time. Certainly, it covers only part of (MR2P), but is substantial in practical ap-
plications. For example, in navigation systems, we may wish to find a route that
is short in length and simultaneously has few intersections to a destination. We
will have a reasonable route by minimizing a rank-two monotonic function, say
(dx + α1)(ex + α2) or max{dx, α3ex}, whereαk ’s are appropriate constants,e is
the vector of ones, and each component ofd represents the distance between two
adjoining intersections.

Let {A0, A+} be a partition of the arc setA, i.e.,A0∩A+ = ∅ andA0∪A+ = A.
In the sequel, we assume that
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c2
ij =

{
0 for each(i, j) ∈ A0

1 for each(i, j) ∈ A+ (2.2)

Note thatA+ 6= ∅; otherwise, condition (i) is not satisfied. Also, we assume for
simplicity that networkG contains a directed path from nodes to nodet . We
can easily check it by solving an ordinary shortest path problem. Under these
conditions, we will discuss the following two cases:

Case 1.f is a rank-two monotonic and continuous quasiconcave function onD;

Case 2.f is a rank-two monotonic and general continuous function onD.

3. Parametric cost algorithm for Case 1

We first show that (MR2P) satisfying condition (2.2) can be solved in polynomial
time if the cost fucntionf is quasiconcave onD, i.e., for anyx, y ∈ D, we have

f [(1− λ)x + λy] > min{f (x), f (y)} for anyλ ∈ [0,1]. (3.1)

The functionsf1 andf2 given in Section 2 satisfy this condition onD1 andD2,
respectively [2].

Wheneverf satisfies (3.1), we can omit the integrality constraintx ∈ Zm and
write the problem simply as follows:

minimize{f (x)|x ∈ X}. (3.2)

The minimum off is achieved at some vertexx∗ of the polyhedronX. The total
unimodularity of the incidence matrix ofG guarantees thatx∗ is an integral vector
and provides an optimals-t path [1]. We also have the following regardless of
condition (2.2):

THEOREM 3.1.If f is quasiconcave onD, there is some constantλ > 0 such that
any optimal solution to a problem

[PC(λ)] minimize{c1x + λc2x|x ∈ X}
is an optimal solution to(3.2).

Proof. See Theorems 9.1 and 9.2 in Konno et al. [11]. �

This theorem holds true even for the problem without network structures so
long asf is rank-two monotonic with respect toc1, c2 and bounded from below on
X. Tuy and Tam [18] have used it and proposed a parametric simplex algorithm for
minimizing a rank-two monotonic quasiconcave function over a general polytope.
Since (3.2) is a special case of their problem, we can solve it in the same way as in
Tuy and Tam [18].
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Note that, in our case,[PC(λ)] is a shortest path problem with nonnegative arc
lengthc1+λc2 for anyλ > 0. We can compute an optimal solutionx(λ) to [PC(λ)]
in O(m+ n log n) time, using Dijkstra’s algorithm [1]. Let

X∗ = {x ∈ Rm|x = x(λ), λ > 0}.

We see from Theorem 3.2 that an optimal solution to (3.2) is given by

x∗ ∈ arg min{f (x)|x ∈ X∗}.

It will be time-consuming to obtain the whole ofX∗ if we use Dijkstra’s algorithm
to computex(λ) for eachλ > 0. We can, however, accomplish it in polynomial
time using algorithms by Karp and Orlin [8]. To solve parametric shortest path
problems just like[PC(λ)], they have developed two algorithms: anO(n3) al-
gorithm based upon dynamic programming and anO(nm log n) network simplex
algorithm. Both generate a partition{I 1, . . . , I r} of the interval[0,∞) and a set
{P 1, . . . , P r} of s-t paths inG such thatP k is a shortest path, with respect to the
arc lengthc1 + λc2, for all λ ∈ I k. Using either of them as a subroutine, we can
tailor the algorithm by Tuy and Tam for problem (3.2).

algorithm PARAMETRIC COST
begin

using one of the algorithms in [8], compute a partition{I 1, . . . , I r} of the
interval [0,∞) and a set{P 1, . . . , P r} of paths inG such thatPk is a
shortest path from nodes to nodet for all λ ∈ I k;
v := +∞;
for k = 1, . . . , r do begin

let xk denote the vector corresponding toP k;
if f (xk) < v then v := f (xk) andx∗ := xk

end
end;

For eachk = 1, . . . , r, the vectorxk is an optimal solution to[PC(λ)] for all λ ∈
I k. Since∪rk=1 I

k = [0,+∞), the set{x1, . . . , xr } can be thought of asX∗; andx∗
refers to an optimal solution to (3.2) at the end of the algorithm. The numberr of
pathsP 1, . . . , P r is known to be at mostn2 [8]. Therefore, PARAMETRICCOST
requiresO(n2) evaluations off in addition toO(n3) or O(nm log n) arith-
metic operations. This result is rather satisfactory compared with those for ordinary
shortest path problems. Since network simplex algorithms are very efficient in
practice, PARAMETRICCOST would be as well when it uses theO(nm log n)
subroutine. Unfortunately, however, the algorithm PARAMETRICCOST only
works on problems with quasiconcave cost functions. Unless the cost function is
quasiconcave, the algorithm can fail even in a toy problem.
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Figure 1. The networkG of problem (3.3).

EXAMPLE 3.1. Consider the following problem with a rank-two convex cost
function:∣∣∣∣∣∣∣∣∣∣∣∣

minimize f (x) = max{c1x, c2x}
subject to x12+ x13− x41 = 1, x24+ x25− x12 = 0

x36− x13 = 0, x41+ x46− x24 = 0
x57− x25 = 0, x67− x36− x46 = 0
−x57− x67 = −1
xij : nonnegative integer for each(i, j),

(3.3)

where

c1
12 = c1

24 = c1
25 = c1

57 = 1, c1
13 = c1

36 = c1
41 = c1

46 = c1
67 = 0

c2
12 = c2

24 = c2
25 = c2

57 = 0, c2
13 = c2

36 = c2
41 = c2

46 = c2
67 = 1.

Figure 1 shows the networkG associated with this problem, where the fine and
bold lines represent the arcs inA0 andA+, respectively.

It is easy to see from Figure 1 that an optimal path isP ∗ = (1,2,4,6,7) of
cost max{c1

12+ c1
24, c

2
46+ c2

67} = 2; but the algorithm PARAMETRICCOST only
generates

I 1 = [0,1], P 1 = (1,3,6,7), max{0, c2
13+ c2

36+ c2
67} = 3

I 2 = [1,+∞), P 2 = (1,2,5,7), max{c2
12+ c2

25+ c2
57,0} = 3

and missesP ∗.
This example suggests that we have to device another algotithm to solve more

general class of (MR2P).
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4. Parametric right-hand-side algorithm for Case 2

Without assumingf to be quasiconcave, let us consider the class of (MR2P)

minimize{f (x)|x ∈ X ∩ Zm} (4.1)

which satisfies condition (2.2) and contains ans-t path in the underlying network
G.

To solve (4.1), we again introduce a parameterλ > 0 but in a way different
from [PC(λ)]:

minimize{f (x)|x ∈ X ∩ Zm, c2x = λ, λ > 0}. (4.2)

Since the value ofc2x is always nonnegative onX, this problem is equivalent to
(4.1). We also see from condition (ii) of the rank-two monotonicity that once the
value ofλ is fixed, (4.2) reduces to a shortest path problem with a side constraint

[PR(λ)]minimize{c1x|x ∈ X ∩ Zm, c2x = λ}.
Let x(λ) be an optimal solution to[PR(λ)] if it exists, and letg(λ) = f [x(λ)],
wheref [x(λ)] is understood to be+∞ if [PR(λ)] has no optimal solutions. Then
(4.2) amounts to a minimization of the univariate function:

minimize{g(λ)|λ > 0}.
While an optimal path of (MR2P) is elementary and contains at mostn−1 arcs, the
path corresponding tox(λ) contains at leastλ arcs. Therefore, to locate a minimum
point λ∗ of g, we need only to solve[PR(λ)] for eachλ ∈ [0, n − 1]. An optimal
solutionx(λ∗) to [PR(λ∗)] solves the target problem (4.1).

Whetherf is quasiconcave or not, this approach never misses an optimal solu-
tion to (4.1); but it seems no good from the computational viewpoint – for shortest
path problems with a side constraint are in general intractable, as is (SWCP). Under
condition (2.2), however, we can show that the total computational time needed in
this approach is polynomial inn andm.

4.1. AUXILIARY NETWORK

Let dλ(i, j) denote the distance, with respect to the arc lengthc1, from nodei to
nodej along a shortest path that contains exactlyλ arcs inA+. If such a path does
not exist, thendλ(i, j) = +∞. Naturally, dλ(s, t) is equal to the optimal value
g(λ) of [PR(λ)].

Now, suppose that a pathP = (s = i0, i1, . . . , ir+1, ir = j) providesdλ(i, j) <
+∞ for λ > 1. Let(iq, iq+1) be the lastA+ arc that we pass when going along the
pathP from nodes. In other words, a subpath(iq+1, . . . , ir ) of P consists of
only arcs inA0. We then see that paths(i0, i1, . . . , iq) and(iq+1, . . . , ir ) provide
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Figure 2. The auxiliary networkG(λ) associated with problem (3.3).

dλ−1(s, iq) andd0(iq+1, j), respectively. Otherwise,P cannot be a shortest path
containing exactlyλ arcs inA+. The following is an immediate consequence:

LEMMA 4.1. For eachλ > 1 we have

dλ(s, j) = min{dλ−1(s, k)+ c1
kl + d0(l, j)|(k, l) ∈ A+} for everyj ∈ N.

(4.3)

Using this relationship, we can successively generated0(s, t), d1(s, t), . . . , dn−1

(s, t), among which is the minimum value ofg, i.e., the length of ans-t path
optimal for [PR(λ∗)] and hence for (4.1). To carry out this in a systematic and
efficient way, we introduce an auxiliary networkG(λ).

Given dλ−1(s, j) with λ > 1, we constructG(λ) from G = (N,A0 ∪ A+)
as follows. We make a copyN ′ of the original node setN , and replace each arc
(i, j) ∈ A+ by an arc(i′, j) of lengthc1

ij from nodei′ ∈ N ′ to nodej ∈ N . We
further introduce an artificial nodes′ and connect it and each nodei′ ∈ N ′ with an
artificial arc(s′, i′) of lengthdλ−1(s, i). Figure 2 illustrates the resulting network
when we apply this transformation to the network in Figure 1.

It follows from the above construction ofG(λ) that any directed path from
nodes′ to nodej ∈ N consists of three parts: the first part is an artificial arc
(s′, k′) of lengthdλ−1(s, k); the second is an arc(k′, l) of length c1

kl substituting
for an arc(k, l) ∈ A+; and the third is a directed path from nodek to nodej in a
subgraph(N,A0) of G. Hence, from Lemma 4.1, the value ofdλ(s, j) is given by
the shortest path distance from nodes′ to nodej ∈ N in G(λ). Since the length
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of each arc inG(λ) is nonnegative, we can apply Dijkstra’s algorithm toG(λ) in
order to computedλ(s, j) for everyj ∈ N .

4.2. DESCRIPTION OF THE ALGORITHM

We are ready to present the algorithm for solving problem (4.1).

algorithm PARAMETRIC RHS
begin

deterine the shortest path distanced0(s, j) from nodes to each nodej ∈ N
in the network(N,A0) with arc lengthc1;
if d0(s, j) < +∞ then let P 0

j denote the path of lengthd0(s, j);
if d0(s, t) < +∞ then

let x∗ denote the vector corresponding toP 0
t andv := f (x∗);

elsev := +∞
for λ = 1, . . . , n− 1 do begin

construct the auxiliary networkG(λ);
determine the shortest path distancedλ(s, j) from nodes′ to each node
j ∈ N in G(λ);
if dλ(s, j) < +∞ then begin

replace the first two arcs(s′, k′) and(k′, l′) in the path lengthdλ(s, j)
by Pλ−1

k and(k, l) ∈ A+;
let Pλj denote the resulting path inG

end;
if dλ(s, t) < +∞ then begin

let xk denote the vector corresponding toPλt ;
if f (xk) < v then x∗ := xk andv := f (x∗)

end
end

end;

THEOREM 4.2.The algorithm PARAMETRICRHS yields an optimal solution
x∗ to (4.1) inO(nm + n2 log n) arithmetic operations andO(n) evaluations of
functionf .

Proof. The algorithm generatesn distancesd0(s, t), d1(s, t), . . . , dn−1(s, t)

between nodess and t . Some of them might be+∞; but at least one, as we
have seen already, is provided by an optimals-t path of (4.1). At the end of the
algorithm,x∗ refers to thes-t path.

Let us turn to the computational complexity. For every nodej ∈ N , the distance
d0(s, j) can be computed inO(m + n log n) arithmetic operations if Dijkstra’s
algorithm is applied to the network(N,A0). In theλth iteration(λ > 1), there are
two major tasks: to construct the auxiliary networkG(λ) and to computedλ(s, j)
for every nodej ∈ N . The former requiresO(n +m) arithmetic operations in the
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first iteration; but afterwards only the lengths of at mostm arcs need updating for
each iteration. The latter can be done inO(m + n log n) arithmetic operations,
using Dijkstra’s algorithm, sinceG(λ) contains 2n+ 1 nodes andn + m arcs.
Therefore, the total number of arithmetic operations isO(nm + n2 log n). In
addition to this, the algorithm evaluatesf at most once for each iteration. Hence,
the total number of evaluations off is bounded byO(n). 2
EXAMPLE 4.2. Let us try to solve problem (3.3) in Example 3.1, using the al-
gorithm PARAMETRIC RHS.

To begin with, we determine the shortest path distanced0(1, j) from nodes = 1
to each nodej = 1, . . . ,7 in the subnetwork(N,A0) (see Figure 1):

j 1 2 3 4 5 6 7

d0(1, j) 0 1 +∞ 2 2 +∞ 3

Since a pathP 0
7 = (1.2,5,7) providesd0(1,7) = 3 < +∞, we initialize the

incumbent:

x∗ij :=
{

1 if (i, j) ∈ {(1,2), (2,5), (5,7)}
0 otherwise

v := f (x∗) = max{c1
12+ c1

25+ c1
57,0} = 3.

Then we proceed to the iteration process.

Iteration 1: We construct the auxiliary networkG(1), as shown in Figure 2, and
determine the shortest path distance in it from nodes′ to nodej = 1, . . . ,7:

j 1 2 3 4 5 6 7

d1(1, j) 2 3 0 4 4 2 5

We obtain P 1
7 = (1,2,4,1,2,5,7) from a path (s′,4′,1,2,5,7) of length

d1(1,7) = 5 inG(1); but it costs

f (x1) = max{2c1
12+ c1

24+ c1
25+ c1

57, c
2
41} = 5> v.

Iteration 2: We update the auxiliary networkG(2) and determine the shortest path
distance in it from nodes′ to each nodej = 1, . . . ,7:

j 1 2 3 4 5 6 7

d2(1, j) 4 5 2 6 7 0 2

We obtainP 2
7 = (1,2,4,6,7) from a path(s′,6′,7) of length d2(1,7) = 2 in

G(2); and it costs

f (x2) = max{c1
12+ c1

24, c
2
46+ c2

67} = 2< v.
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Therefore, we update the incumbent:

x∗ij := x2
ij =

{
1 if (i, j) ∈ {(1,2), (2,4), (4,6), (6,7)}
0 otherwise

v := f (x2) = 2.
(4.4)

Iterations3, . . . ,6: In the same way as above, for eachλ = 3, . . . ,6, we compute
dλ(1, j) for j = 1, . . . ,7 and f (xk):

j 1 2 3 4 5 6 7

d3(1, j) 6 7 4 8 8 2 0 f (x3) = 3

d4(1, j) 8 9 6 10 10 4 2 f (x4) = 4

d5(1, j) 10 11 8 12 12 6 4 f (x5) = 5

d6(1, j) 12 13 10 14 14 8 6 f (x6) = 6

Sincef (xλ) > v for eachλ = 3, . . . ,6, the pathP 2
7 is optimal; and (4.4) is an

optimal solution to (3.3).
Thus, we succeeded in solving problem (3.3). Even iff is nonconvex in (3.3),

the algorithm PARAMETRICRHS will generate the same sequencedλ(1,7), λ =
0,1, . . . ,6; but possibly the output will be different from (4.4).

5. Concluding remark

In the previous sections, we have developed two parametric algorithms to solve
a class of minimum rank-two cost path problem (MR2P) in whichc2, one of the
vectors characterizing the rank-two monotonic cost functionf , is a binary vec-
tor. The algorithm PARAMETRICCOST yields an optimal solution inO(n3) or
O(nm log n) arithmetic operations andO(n2) evaluations off if the functionf is
quasiconcave. The algorithm PARAMETRICCOST solves any problems in this
class inO(nm+n2 log n) arithmetic operations andO(n) evaluations off . Using
these algorithms, we can solve the general class of (MR2P) in pseudopolynomial
time.

For a given problem in (MR2P), we first transform the underlying networkG =
(N,A) as follows (see also Figure 3). For each(i, j) ∈ A with c2

ij > 1, we install
c2
ij −1 nodes on arc(i, j) and divide it intoc2

ij directed arcs. LetAij denote the set
of arcs generated on arc(i, j) ∈ A. We then associate with each arc(p, q) ∈ Aij
two numbers

c̃1
pq =

{
c1
ij if p = 1

0 otherwise
, c̃2
pq = 1. (5.1)

The resulting network, denoted bỹG, contains at mostn + C nodes andm + C
arcs, whereC =∑(i,j)∈A c

2
ij . The original networkG contains a pathP from node
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Figure 3. (a) arc(i, j) in the original networkG; (b) arc setAij in the resulting network̃G.

s to nodet if and only if G̃ contains a path̃P between the same nodes. For each arc
(i, j) ∈ P , the pathP̃ contains all the arcs inAij . Therefore, from (5.1), we have∑

(i,j)∈P
ckij =

∑
(p,q)∈P̃

c̃kpq for k = 1,2,

which implies that the costs ofP andP̃ are identical. Since the vectorc̃2 of c̃2
pq ’s

is binary, we can apply our algorithms to the networkG̃. The time needed in this
approach is polynomial inn, m andC, since the numbers of nodes and arcs inG̃

are linear in them.
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