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Abstract. In this paper, we develop two algorithms for finding a directed path of minimum rank-
two monotonic cost between two specified nodes in a networkavitbdes andn arcs. Under the
condition that one of the vectors characterizing the cost funcfiembinary, one yields an optimal
solution in O(n3) or O(nm log n) time if f is quasiconcave; the other solves any problem in
O (nm + n? log n) time.
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1. Introduction

A number of global optimization problems encountered in real-world applications
have some special structures which enable us to design efficient algorithms [7].
One of the most favorable structures is tber rank monotonicitystudied by Tuy

et al. [11,13,14]. The nonlinearity of any rakknonotonic functionf is located in

a subspace of dimensidneven if f is defined on a subset of much higher dimen-
sional space thah. Functions of this kind appear in multiplicative programming
[10,18], facility location [15], multilevel programming [17] and certain variants of
minimum concave-cost network flows, for which even polynomial algorithms have
been developed [6,9,16]. Especially in multiple objective decision making, they
play an important role [3,5]. In fact, when a decision maker héisear object-

ivesclx, ..., ckx without a common scale, a handy approach to optimizing them
simultaneously is to optimize a ratkmonotonic function such ag(x) = ]_[f.‘:1
(c'x +a;)or f(x) =maxX{a;c'x|i =1,...,k} for some constants;’s.

In this paper, we consider a minimum rank-two cost path problem, i.e., a prob-
lem of finding a directed path which minimizes a rank-two monotonic cost function
f between two specified nodes in a given network withodes andn arcs. Re-
cently, in-car navigation systems using artificial satellites have made it possible
to find a way to a destination without road maps. The present systems, however,
only provide several candidate routes from which a driver must make a selection
while driving. Therefore, efficient algorithms for minimizing rank-two monotonic
functions will be helpful in reducing the driver’s burden.
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The organization of the paper is as follows. In Section 2, we will describe the
problem formally and show that it is & #-hard problem. In Sections 3 and 4,
we will concentrate on a class that one of the vectors characterizing the rank-two
monotonic cost functiory is binary. We will develop two algorithms for solving
the class: one yields an optimal solution én(n3) or O(nm log n) arithmetic
operations and (n?) evaluations off if the cost functionf is quasiconcave; the
other solves any problem in this class@inm + n? log n) arithmetic operations
and O (n) evaluations off. In Section 5, we will briefly discuss an application of
these algorithms to the general class of problems.

2. Minimum rank-two cost path problem

Let G = (N, A) be a graph consisting of a sat of n nodes and a set of m
directed arcs. Our purpose is to determine a directed path of minimum cost from a
specified node to another specified nodein G. When the number of times the
path traverses each aic j) € A is x;;, it costs f (x), wherex € Z™ is the vector

of x;;’s. We assume that the cost functigh: R™ — R is continuous on some
open convex seb, which includes the seX of all x > 0 satisfying

1 fori =s
Z Xij — Z xjp=14 -1 fori=1¢ (2.1)
{jlG. j)eA} (1G.i)eA) 0 for eachi € N\{s, t}.

We further assume thgt is rank-two monotonion D with respect to two nonneg-
ative vectors:! andc? € Z™ [12,18]. Namely,

(i) the vectorsc! andc? are linearly independent;
(ii) if x,y € Dandcf(x —y) > 0fork = 1,2, thenf(x) > f(y).

As will be seen laterf can be a convex function; but the class also involves non-
convex functions such as multiplicative functiofigx) = (ctx + a1)(cx + a»)
onD; = {x € R"|c*kx + ax > 0,k = 1,2} and fractional functionsfz(x) =
clx/(az — c®x) on Dy = {x € R™|c*x > 0, a3 — c3x > 0}. For other examples
of nonconvexf, see a recent textbook of structured nonconvex optimization by
Konno, Thach and Tuy [11].

We call the problem described abovenanimum rank-two cost path problem
which can be formulated as follows:

(MR2P) minimize{ f (x)|x € X N Z™}.

Under conditions (i) and (ii), an optimal solutiorf to (MR2P) is given by an
elementary pattP if nodess andr are connected. For suppose tifatontains a
directed cycleC. Let

xl.*j—l if G, j)eC
Yij =

x;kj otherwise.
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Then we have* (x* — y) = Z(i,j)ec cf?j > 0 fork = 1, 2, which implies that
f(x*) = f(y). The cost does not rise evendfis discarded fronP.

Problem (MR2P), though simple looking, is intractable from the viewpoint of
worst-case complexity; and in fact it belongs to the clas8-hard. To see this, let
us consider the following recognition problem:

SHORTEST WEIGHT-CONSTRAINT PATH (SWCP) [4]

INSTANCE: GraphG = (N, A), positive length;; € Z, positive weightw;; € Z
for each(i, j) € A, specified nodes, t € N, positive integerk’, W.

QUESTION: Is there a path i66 from s to ¢ with total weightW or less and total
lengthK or less?

The recognition version of the 0-1 knapsack problem, well known toMaze-
complete, can reduce in polynomial time to this problem (see, e.g., Ahuja et al.
[1]); and hence (SWCP) is aN #-complete problem.

Choosing any instance of (SWCP), let us define a convex function:

fz(x) = maX{ix — K, wx — W},

wherel andw are the vectors df;’s andw;;’s, respectively. If andw are linearly
dependent, the instance is equivalent to an ordinary shortest path problem and
can be solved in polynomial time; therefore, we can assume condition (i) for
andw without loss of generality. Moreover, we can see tfiasatisfies condition

(i) on R™ with respect td and w. In other words,f3 is a rank-two monotonic
function. The instance has the ‘yes’ solution if and onlgifcontains ary-¢ path

with nonpositive f3(x), which can be verified by solving (MR2P) with = f3.
Consequently, we have

PROPOSITION 2.1Problem (MR2P) isV & -hard.

In the rest of this paper, we concentrate on a class of (MR2P) where all the
nonzero components of or ¢? are the same value. Singés rank-two monotonic
with respect tax;c! anda,c? for any positivea,’s, we can assume either of the
vectors to be binary. We then show that this class can be solved in polynomial
time. Certainly, it covers only part of (MR2P), but is substantial in practical ap-
plications. For example, in navigation systems, we may wish to find a route that
is short in length and simultaneously has few intersections to a destination. We
will have a reasonable route by minimizing a rank-two monotonic function, say
(dx + ay)(ex + ap) or maxidx, azex}, wherew,’s are appropriate constantsjs
the vector of ones, and each componend eépresents the distance between two
adjoining intersections.

Let{Ag, A} be a partition of the arc set, i.e.,AgNA, = FandAgUA, = A.
In the sequel, we assume that
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c (2.2)

> | 0 foreach(, j) € Ao
i 1 foreach(, j) € A,

Note thatA, # @; otherwise, condition (i) is not satisfied. Also, we assume for
simplicity that networkG contains a directed path from nodeto noder. We

can easily check it by solving an ordinary shortest path problem. Under these
conditions, we will discuss the following two cases:

Case 1. f is a rank-two monotonic and continuous quasiconcave functiobR;on

Case 2. f is a rank-two monotonic and general continuous functiobon

3. Parametric cost algorithm for Case 1

We first show that (MR2P) satisfying condition (2.2) can be solved in polynomial
time if the cost fucntionf is quasiconcave oP, i.e., for anyx, y € D, we have

SIQA = 2)x +ay] = min{f (x), f ()} foranyx € [0, 1]. 3.1)

The functionsf; and f,> given in Section 2 satisfy this condition d», and Do,
respectively [2].

Wheneverf satisfies (3.1), we can omit the integrality constraing Z™ and
write the problem simply as follows:

minimize{ f (x)|x € X}. (3.2)

The minimum of f is achieved at some vertex of the polyhedronX. The total
unimodularity of the incidence matrix @ guarantees that" is an integral vector
and provides an optimal-r path [1]. We also have the following regardless of
condition (2.2):

THEOREM 3.1If f is quasiconcave of, there is some constait> 0 such that
any optimal solution to a problem

[PC ()] minimizgctx + Ac?x|x € X}

is an optimal solution t@3.2).
Proof. See Theorems 9.1 and 9.2 in Konno et al. [11]. a

This theorem holds true even for the problem without network structures so
long asf is rank-two monotonic with respect i, ¢? and bounded from below on
X. Tuy and Tam [18] have used it and proposed a parametric simplex algorithm for
minimizing a rank-two monotonic quasiconcave function over a general polytope.
Since (3.2) is a special case of their problem, we can solve it in the same way as in
Tuy and Tam [18].
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Note that, in our cas¢PC(1)] is a shortest path problem with nonnegative arc
lengthct 4 Ac? for anya > 0. We can compute an optimal solutieti) to [PC(1)]
in O(m + n log n) time, using Dijkstra’s algorithm [1]. Let

X*={xeR"x=x(A), A >0
We see from Theorem 3.2 that an optimal solution to (3.2) is given by
x" eargminf(x)|x € X*}.

It will be time-consuming to obtain the whole &f* if we use Dijkstra’s algorithm

to computex (1) for eacha > 0. We can, however, accomplish it in polynomial
time using algorithms by Karp and Orlin [8]. To solve parametric shortest path
problems just like[PC(A)], they have developed two algorithms: @nx®) al-
gorithm based upon dynamic programming anddnm log n) network simplex
algorithm. Both generate a partitidd®, ... , I”} of the interval[0, co) and a set
(P, ..., P"} of s-t paths inG such thatP* is a shortest path, with respect to the
arc lengthc! + Ac?, for all A e I*. Using either of them as a subroutine, we can
tailor the algorithm by Tuy and Tam for problem (3.2).

algorithm PARAMETRIC_COST

begin
using one of the algorithms in [8], compute a partitid, . .. , I"} of the
interval [0, oo) and a set{ P!, ..., P"} of paths inG such thatP, is a
shortest path from nodeto noder for all A € I¥;
v = 400,

fork=1,...,r dobegin
let x* denote the vector correspondingRé;
if f(x*) <wvthenv:= f(x*) andx* := xF
end
end,

Foreachk =1, ..., r, the vector* is an optimal solution tPC(1)] for all A €
I¥. SinceU;_; I* = [0, +00), the set{x?, ... , x"} can be thought of a%*; andx*
refers to an optimal solution to (3.2) at the end of the algorithm. The numbgr
pathsP®, ..., P"is known to be at most? [8]. Therefore, PARAMETRICCOST
requires O (n?) evaluations off in addition to O(n®) or O(nm log n) arith-
metic operations. This result is rather satisfactory compared with those for ordinary
shortest path problems. Since network simplex algorithms are very efficient in
practice, PARAMETRICCOST would be as well when it uses tbignm log n)
subroutine. Unfortunately, however, the algorithm PARAMETRBOST only
works on problems with quasiconcave cost functions. Unless the cost function is
guasiconcave, the algorithm can fail even in a toy problem.
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Figure 1. The networkG of problem (3.3).

EXAMPLE 3.1. Consider the following problem with a rank-two convex cost
function:

minimize f(x) = max{cx, c’x}

subjecttoxio + x13 —x41 =1, Xp4+ x5 —x12 =0

x36 — x13 =0, X41 + X46 — x24 =0 (3.3)
x57 — X25 = 0, Xe7 — X36 — X46 =0
—x57 — Xg7 = —1

x;; : honnegative integer for each j),

where

11 1 _ 1 _ 11 1 1 .1 _
Clp=Cp=Cp=cg =L cg=czg=cy=cg=cg;=0

_ _ _ _ _ _ _ _ 2
Cp=Cy=Cp=c5 =0, clz=cze=c=cig=c5; =1

Figure 1 shows the networi associated with this problem, where the fine and
bold lines represent the arcsp and A, respectively.

It is easy to see from Figure 1 that an optimal pattPis= (1, 2,4, 6, 7) of
cost maxci, + ¢3,, ¢3¢ + c&;} = 2; but the algorithm PARAMETRIGCOST only
generates

I'=1[0,1], P'=(1,3,6,7), maxo,c2;+ c3;+c3,} =3
12 =[1,400), P?=(1,2,57), maxc?,+ ¢35+ cZ,, 0} =3
and misse®*.

This example suggests that we have to device another algotithm to solve more
general class of (MR2P).
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4. Parametric right-hand-side algorithm for Case 2

Without assumingf to be quasiconcave, let us consider the class of (MR2P)
minimize{ f (x)|x € X N Z™} (4.2)

which satisfies condition (2.2) and containssanpath in the underlying network
G.

To solve (4.1), we again introduce a parameéter O but in a way different
from [PC(M)]:

minimize{ f (x)|x € X N Z™, ¢?x = A, A > 0}. (4.2)

Since the value of?x is always nonnegative oK, this problem is equivalent to
(4.1). We also see from condition (ii) of the rank-two monotonicity that once the
value of2 is fixed, (4.2) reduces to a shortest path problem with a side constraint

[PR(A)] minimize{cix|x € X N Z™, c®x = A}.

Let x(A) be an optimal solution toPR(A)] if it exists, and letg(A) = f[x(L)],
where f[x(1)] is understood to be-oco if [PR(1)] has no optimal solutions. Then
(4.2) amounts to a minimization of the univariate function:

minimize{g(A)|A > 0}.

While an optimal path of (MR2P) is elementary and contains at mest arcs, the
path corresponding te(1) contains at least arcs. Therefore, to locate a minimum
point A* of g, we need only to solvEPR())] for eachi € [0, n — 1]. An optimal
solutionx (A*) to [PR(A*)] solves the target problem (4.1).

Whetherf is quasiconcave or not, this approach never misses an optimal solu-
tion to (4.1); but it seems no good from the computational viewpoint — for shortest
path problems with a side constraint are in general intractable, as is (SWCP). Under
condition (2.2), however, we can show that the total computational time needed in
this approach is polynomial im andm.

4.1. AUXILIARY NETWORK

Let d*(i, j) denote the distance, with respect to the arc lergtlirom nodei to
node; along a shortest path that contains exagthrcs inA_. If such a path does
not exist, thend” (i, j) = +oo. Naturally,d*(s, t) is equal to the optimal value
g() of [PR(V)].

Now, suppose that a path= (s = ig, i1, ... ,i,41, i, = j) providesd”(i, j) <
+oofor A > 1. Let(i,, i, 1) be the lastA, arc that we pass when going along the
path P from nodes. In other words, a subpatti, i1, ... ,i.) of P consists of
only arcs inAg. We then see that patli, i1, ... ,i,) and(ig41, ... , i,) provide
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Figure 2. The auxiliary networkG (1) associated with problem (3.3).

d*=(s,i,) andd®(i 1, j), respectively. Otherwise? cannot be a shortest path
containing exactly. arcs inA_. The following is an immediate consequence:

LEMMA 4.1. For eachi > 1 we have

d*(s, j) = min{d* (s, k) + ¢, + d°(, j)|(k, 1) € A,} for everyj € N.
(4.3)

Using this relationship, we can successively geneféte, 1), d*(s, 1), ... ,d" !

(s, 1), among which is the minimum value @f, i.e., the length of an-r path
optimal for [PR(A*)] and hence for (4.1). To carry out this in a systematic and
efficient way, we introduce an auxiliary netwotk(i).

Givend*(s, j) with A > 1, we construciG(1) from G = (N, Ag U A})
as follows. We make a copy’ of the original node sed, and replace each arc
@i, j) € A, by an arc(i’, j) of Iengthcl.lj from nodei’ € N’ to nodej € N. We
further introduce an artificial nodg and connect it and each notles N’ with an
artificial arc(s’, i’) of lengthd”* (s, i). Figure 2 illustrates the resulting network
when we apply this transformation to the network in Figure 1.

It follows from the above construction d@f()) that any directed path from
nodes’ to nodej € N consists of three parts: the first part is an artificial arc
(s', k') of lengthd”~1(s, k); the second is an an&’, /) of lengthc, substituting
for an arc(k,l) € Ay; and the third is a directed path from nokléo node; in a
subgraph N, Ap) of G. Hence, from Lemma 4.1, the valuedf(s, j) is given by
the shortest path distance from nadeéo nodej € N in G(1). Since the length
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of each arc inG (1) is nonnegative, we can apply Dijkstra’s algorithm@@aex) in
order to compute” (s, j) for everyj € N.

4.2. DESCRIPTION OF THE ALGORITHM

We are ready to present the algorithm for solving problem (4.1).

algorithm PARAMETRIC_RHS
begin
deterine the shortest path distant%s, j) from nodes to each nodg € N
in the network(N, Ap) with arc lengthe?;
if d%s, j) < +oo then let P denote the path of lengif (s, j);
if d%(s,t) < 400 then
letx* denote the vector corresponding®8 andv := f (x*);
elsev := 400
fora=1,...,n—1dobegin
construct the auxiliary network (1.);
determine the shortest path distaaés, j) from nodes’ to each node
jeNINnGQ);
if d*(s, j) < 400 then begin
replace the first two arag’, k') and(k’, /') in the path lengthl” (s, j)
by P/t and(k, ) € A,;
let P} denote the resulting path @&
end,
if d*(s, ) < 400 then begin
let x* denote the vector corresponding 29;
if f(x*) <vthen x*:=x* andv := f(x*)
end
end
end,

THEOREM 4.2.The algorithm PARAMETRIQRHS yields an optimal solution
x* to (4.1) inO(nm + n? log n) arithmetic operations and (rn) evaluations of
function f.

Proof. The algorithm generates distancesd®(s, t), d*(s,t),... ,d" (s, 1)
between nodes and:. Some of them might be-oco; but at least one, as we
have seen already, is provided by an optintal path of (4.1). At the end of the
algorithm,x* refers to thes-¢ path.

Let us turn to the computational complexity. For every ngde N, the distance
d°(s, j) can be computed i®(m + n log n) arithmetic operations if Dijkstra’s
algorithm is applied to the netwoilV, Ag). In therth iteration(Ax > 1), there are
two major tasks: to construct the auxiliary netwarkr) and to computel* (s, )
for every nodej € N. The former require® (n + m) arithmetic operations in the
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first iteration; but afterwards only the lengths of at masarcs need updating for
each iteration. The latter can be doneGrim + n log n) arithmetic operations,
using Dijkstra’s algorithm, sinc& (1) contains 2n+ 1 nodes and: + m arcs.
Therefore, the total number of arithmetic operationigim + n? log n). In
addition to this, the algorithm evaluatgsat most once for each iteration. Hence,
the total number of evaluations ¢gfis bounded byO (n). a

EXAMPLE 4.2. Let us try to solve problem (3.3) in Example 3.1, using the al-
gorithm PARAMETRIC RHS.

To begin with, we determine the shortest path distaif¢, j) from nodes = 1
toeachnodg =1, ..., 7 inthe subnetworkN, Ap) (see Figure 1):

j |12 3 45 6 7
do(l,j)‘01+0022—|—oo3

Since a pathP70 = (1.2,5,7) providesd®(1,7) = 3 < 400, we initialize the
incumbent:

| 0 otherwise

X
vi=f(x*) = max{ciz + 0%5 + cé7, 0} =3
Then we proceed to the iteration process.

Iteration 1: We construct the auxiliary netwon (1), as shown in Figure 2, and
determine the shortest path distance in it from ndde nodej =1, ..., 7:

j |1 23 45867
dl(l,j)‘2304425

We obtain P} = (1,2,4,1,2,5,7) from a path(s’,4,1,2,5,7) of length
d*(1,7) = 5in G(1); but it costs

fxh = max2ci, + 34+ c3s+ cipn ¢34} =5 > v.

Iteration 2: We update the auxiliary netwoi (2) and determine the shortest path
distance in it from node’ to eachnodg = 1,... ,7:
j \ 1 2 3 45 6 7
d2(1,j)‘4 5 2 6 7 0 2

We obtainP? = (1,2,4,6,7) from a path(s’, 6, 7) of lengthd?(1,7) = 2 in
G(2); and it costs

(%) =max(cl, + ¢34 Chgt+ il =2 <.
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Therefore, we update the incumbent:

.2 { 1if (i, j) € {(1,2), (2,4), (4,6), (6,7)}

Yij =Y =1 0 otherwise (4.4)
vi= f(x?) =2
Iterations3, ... , 6: In the same way as above, for edchk: 3, ... , 6, we compute
d* (1, jyfor j=1,...,7and f(¥):
J 1 2 3 4 5 6 7
a@,j)| 6 7 4 8 8 2 0 f(x3=3
d*@1,j)| 8 9 6 10 10 4 2 fxH =4
d®@1,j) |10 11 8 12 12 6 4 f(x> =5

d®1,j) |12 13 10 14 14 8 4§ f(x®) =6

Since f(x*) > v for eacha = 3,..., 6, the pathP? is optimal; and (4.4) is an
optimal solution to (3.3).

Thus, we succeeded in solving problem (3.3). Evefi i§ nonconvex in (3.3),
the algorithm PARAMETRICRHS will generate the same sequedté€l, 7), A =
0,1,...,6; but possibly the output will be different from (4.4).

5. Concluding remark

In the previous sections, we have developed two parametric algorithms to solve
a class of minimum rank-two cost path problem (MR2P) in whiéhone of the
vectors characterizing the rank-two monotonic cost funcifgns a binary vec-
tor. The algorithm PARAMETRICCOST yields an optimal solution i@ (n3) or
O(nm log n) arithmetic operations andl (n?) evaluations off if the function f is
guasiconcave. The algorithm PARAMETRICOST solves any problems in this
class inO (nm +n? log n) arithmetic operations an€ (n) evaluations off . Using
these algorithms, we can solve the general class of (MR2P) in pseudopolynomial
time.

For a given problem in (MR2P), we first transform the underlying netwipek
(N, A) as follows (see also Figure 3). For eaghj) € A with Cizj > 1, we install

cl.zj — 1 nodes on ar¢, j) and divide it int0cl.2j directed arcs. Let\;; denote the set
of arcs generated on a(t; j) € A. We then associate with each &g ¢) € A;;
two numbers

~1 { C}j |f p = 1 ~2

Cpqg =

0 otherwise’ Cr¢ = ¥ (5.1)

The resulting network, denoted Hfy, contains at most + C nodes andn + C
arcs, whereC =3, ;.4 clzj The original networlG contains a patt? from node
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Figure 3. (a) arc(i, j) in the original networkG; (b) arc set4;; in the resulting networlG.

s to noder if and only if G contains a pattP between the same nodes. For each arc
(i, j) € P, the pathP contains all the arcs iA;;. Therefore, from (5.1), we have

Z cfj: Z Eﬁqforkzl,z,

G.))ep (p.q)eP

which implies that the costs df and P are identical. Since the vectéf of &2 's
is binary, we can apply our algorithms to the netwdtk The time needed in this
approach is polynomial in, m andC, since the numbers of nodes and arc&in
are linear in them.
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